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Technical Abstract 
 

By measuring relative earthquake arrival times using waveform cross correlation and 
locating earthquakes using the double-difference technique, we are able to reduce 
hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 
earthquakes along a 35-km section of the Calaveras Fault. This represents ~92% of all 
seismicity on this fault from 1984-1998 and includes the rupture zone of the M 6.2 1984 
Morgan Hill, California, earthquake. The relocated seismicity forms highly organized 
structures that were previously obscured by location errors. There are abundant repeating 
earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity 
appear with dimensions of kilometers that have been aseismic over the 30-year time 
interval, suggesting that these portions of the fault are either locked or creeping. The area 
of greatest slip in the Morgan Hill main shock coincides with the most prominent of these 
voids, suggesting that this part of the fault may be locked between large earthquakes. We 
find that the Calaveras Fault at depth is extremely thin, with an average upper bound on 
fault zone width of 75 m. Given the location error, however, this width is not resolvably 
different from zero. The relocations reveal active secondary faults, which we use to solve 
for the stress field in the immediate vicinity of the Calaveras Fault. We find that the 
maximum compressive stress is at a high angle, only 13° from fault normal, even to 
within a few hundred meters of the Calaveras fault, supporting previous interpretations 
that this fault is weak. 
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Non-Technical Abstract 
 

By careful measurement of the arrival times of earthquake waves in combination with 
improved earthquake location techqniques, we are able to reduce earthquake location 
errors from over 1 km to 100 meters or less for nearly 8000 earthquakes along a 35-km 
section of the Calaveras Fault in California. The improved earthquake locations allow us 
to discern highly organized structures in the seismicity that were previously obscured. 
We find many sequences of repeating earthquake sequences, linear clusters of 
earthquakes, large voids in seismicity on the Calaveras fault. The relocations also reveal 
active secondary faults that support previous interpretations that the Calaveras fault is 
weak. 
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Introduction 
 

The Calaveras Fault (figure 1) is one of the most active branches of the San Andreas 
system in northern California.  In the 20th century there have been a series of moderate 
magnitude earthquakes some of which have repeated [Oppenheimer et al., 1990]. The 
largest of these earthquakes was the M 6.2 1984 Morgan Hill earthquake, which appears 
to have been a repeat of an earthquake in 1911. The long-term slip rate on the Calaveras 
Fault to the south of where the Hayward Fault splays from it is thought to be 15 ± 3 
mm/yr [Working Group on California Earthquake Probabilities (WGCEP), 1999].  

 
In addition to rupture in moderate earthquakes, this section of the Calaveras Fault has 

been extraordinarily active in microearthquake activity. It is also known to creep with an 
average rate of ~13.5 mm/yr since 1997 [WGCEP, 1999]. Because of the combination of 
a fast slip rate, the presence of creep, and equivocal paleoseismic evidence for large 
earthquakes in the past, the potential for future large earthquakes on the central section of 
the Calaveras Fault remains uncertain [WGCEP, 1999]. 

 
Oppenheimer et al. [1990] studied microearthquake activity of the Calaveras Fault in 

great detail. They found a correspondence between the areas that slipped in moderate 
earthquakes with areas that were relatively devoid of microearthquake activity. They also 
found that small earthquakes had a very similar spatial distribution both before and after 
moderate earthquakes. They proposed that the areas devoid of seismicity were stuck 
between moderate earthquakes and used this assumption to identify two likely source 
zones for future moderate earthquakes on the Calaveras Fault.  

 
The geometry of fault zones within the Earth is revealed primarily by seismicity. In 

this study, we greatly improve the earthquake locations on the Calaveras Fault. Our 
ability to resolve fault zone structure and hence to address many essential aspects of 
earthquake behavior, is limited by our ability to obtain precise earthquake locations. 
While quantitative earthquake location techniques date back to the early years of the 20th 
century [e.g., Geiger, 1910],  our incomplete knowledge of Earth structure and the 
difficulty of measuring arrival times accurately typically limits the accuracy of 
earthquake locations to tens of kilometers at teleseismic distances and several kilometers 
at regional distances even in well instrumented regions like California and Japan. 

 
Uncertainty in earthquake locations can be dramatically reduced by aiming for 

precision, rather than accuracy, in the form of relative earthquake locations [e.g., 
Poupinet et al., 1984; Fre´chet, 1985; Deichmann and Garcia-Fernandez, 1992; Got et al., 
1994]. In this study, we improve the precision of earthquake locations in two principal 
ways: (1) removing substantial velocity model error with the double difference approach 
[Waldhauser and Ellsworth, 2000] and (2) reducing relative arrival time measurement 
errors by waveform cross correlation [Schaff, 2001]. The combination allows us to 
reduce relative location errors by 1 to 2 orders of magnitude for the entire data set. 

 
What emerges from the improved earthquake locations is a highly refined picture of 

seismicity on the Calaveras Fault (figures 2,3,4). Numerous features that were seen as 



clouds of seismicity are brought into sharp focus (figure 2). These features include 
streaks of earthquakes that are elongated in the direction of slip, repeating 
microearthquakes that recur up to dozens of times, and large areas of little seismicity. We 
obtain a clearer view of a kilometer-scale compressional fault offset and its geometry at 
depth. We are also able to resolve secondary fault structures, which were previously 
suggested by focal mechanisms [Oppenheimer et al., 1988]. Slip on these structures 
indicate that the maximum compressive stress is at a high angle to the Calaveras Fault 
implying that it is weak if the stress remains unfavorably oriented on the fault plane. This 
seems likely, as secondary structures are active to within 100 m of the main fault trace. If 
the stress rotates into a more favorable orientation, it must do so within several hundred 
meters of the fault. The improved locations also allow us to constrain the degree of strain 
localization on the Calaveras Fault. We find a very narrow fault zone width of no more 
than 75 m at seismogenic depths. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Study area is a 35 km
segment of the Calaveras fault near
San Jose, California.  There were
nearly 8000 earthquakes on the fault
during the period  of study.  We used
approximately 8,000,000 cross
correlation arrival time measurements
of P and S waves to relocate these
earthquakes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Improvement in earthquake locations is demonstrated by comparing the
standard catalog locations (left panel) with the improved locations (right panel).  The
previously chaotic seismicity becomes highly organized after relocation. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Map view of earthquakes before (top) and after (bottom) relocation.  The
map is oriented such that the trend of the nearly vertical Calaveras fault is horizontal
on the figure.  The fault discontinuity at 14-18 km along strike is much more clearly
defined in the relocations.  Many of the off-fault earthquakes above the fault in the
figure show up much more clearly in the relocations.  These are right-lateral (not
conjugate) strike-slip faults and the trend of the microearthquakes is consistent with
their focal mechanisms.  The more diffuse seismicity shown below the mainshock
fault plane defines a clear dipping planar fault in cross section.  Here too the rreverse
faulting focal mechanisms of these events is consistent with the planes of
microearthquakes in the relocations.  Together with the mainshock fault plane, these
combinations of active faults constrain the maximum compressive stress to be nearly
normal to the Calaveras Fault.  The mainshock fault plane itself is much more sharply
defined in the relocations and the width of the fault at depth is not resolvably different
from zero.   

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Side view of earthquakes before (top) and after (bottom) relocation.  The
earthquakes are plotted as circles with the size of the circle corresponding to that
expected for a circular constant stress drop of 3 MPa.   Much of the fault is not
covered with seismicity and there are many areas of frequently repeating earthquakes.
The large circle is the 1984 Morgan Hill California earthquake.  This earthquake is
large enough that there are independent determinations of the slip distribution from
strong motion data [Beroza and Spudich, 1988].  These indicate that most of the slip
occurred in areas devoid of microearthquake activity, which in turn suggests that these
areas are locked between large earthquakes.  The streaks of seismicity are roughly
aligned with the slip direction.  A temporary deepening of the deepest earthquakes
from –1 to –4 km along strike (not shown) following the 1984 Morgan Hill earthquake
is consistent with the notion that a strain-rate dependent rheology controls the depth of
the seismic to aseismic transition. 

 
 
 
 
 
 



A complete description of our results for the Calaveras Fault was published in the 
Journal of Geophysical Research as:  

 
Schaff, D. P., G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, and W. L. Ellsworth, 

High resolution image of Calaveras Fault seismicity, J. Geophys. Res., 107 (B9), 
2186, doi:10.1029/2001JB000633, 2002. 

 
A description of the cross correlation measurement techniques that were used to 

develop these locations was published in the Bulletin of the Seismological Society of 
America as: 
 
Schaff, D.P., G.H.R. Bokelmann, W. L. Ellsworth, E. Zanzerkia, F. Waldhauser, and G. 

C. Beroza, Optimizing correlation techniques for improved earthquake location, 
Bull. Seismol. Soc. Am., 94, 705-721, 2004. 
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